Transport White Paper, Climate Roadmap & quantitative modelling results

EU Transport GHG: Routes to 2050 II - 1st stakeholder conference

Marek Šturc

European Commission - Climate Action DG

Directorate A: International & Climate Strategy

Unit A4: Strategy & Economic Assessment

Presentation Outline

- 1) Climate Roadmap: A Roadmap for moving to a competitive low carbon economy in 2050
- 2) Transport White Paper: Roadmap to a Single European Transport Area Towards a competitive and resource efficient transport system
- 3) Presentation focus: modeling framework, quantitative analysis, data & results

Part 1

Roadmap for moving to a competitive low carbon economy in 2050

A cost-efficient pathway towards 2050

Sectoral milestones

All sectors contribute!

... but in different manner:

GHG reductions compared to 1990	2005	2030	2050
Power (CO ₂)	-7%	-54 to -68%	-93 to -99%
Industry (CO ₂)	-20%	-34 to -40%	-83 to -87%
Transport (incl. CO ₂ aviation, excl. maritime)	+30%	+20 to -9%	-54 to -67%
Residential and services (CO ₂)	-12%	-37 to -53%	-88 to-91%
Agriculture (non-CO ₂)	-20%	-36 to -37%	-42 to -49%
Other non-CO ₂ emissions	-30%	-72 to -73%	-70 to -78%

Part 2

Roadmap to a Single European Transport Area

Towards a competitive and resource efficient transport system

GHG objectives in the 2011 Transport White Paper

- a reduction of at least 60% of GHGs by 2050 with respect to 1990 is required
- by 2030, the goal for transport will be to reduce GHG emissions to around 20% below their 2008 level - given the substantial increase in transport emissions over the past two decades, this would still put them 8% above the 1990 level
- low-carbon sustainable fuels in aviation to reach 40% by 2050
- by 2050 reduce EU CO₂ emissions from maritime bunker fuels by 40% (if feasible 50%)

GHG related initiatives

The Transport White Paper has actions foreseen in a number of areas that will work to directly lower GHG emissions:

- 6: Adapt weight and dimensions legislation for HDVs
- 24: Technology roadmap (provided GHG is an important goal)
- 26: Regulatory framework for vehicles
- 28: Vehicle CO₂ labelling
- 29: Carbon footprint calculator
- 30: Eco-driving and LCV speed limits
- 31: Urban mobility plans
- 32: EU urban charging framework
- 33: Low carbon city vehicles
- 39: Smart pricing and taxation

Part 3

modelling framework quantitative analysis data & results

Where is EU today?

EU27 Reference Scenario

EU27 Reference Scenario passenger-km

EU27 Reference Scenario tonne-km

Transport Energy Mix [Mtoe] Road Transport Energy Mix [Mtoe] Aviation Energy Mix

Reference Scenario

Reference Scenario

Transport Energy Mix [Mtoe] Road Transport Energy Mix [Mtoe] Aviation Energy Mix

Road Transport Energy Mix [Mtoe]

Decarbonisation scenario under delayed electrification
and global climate action

Decarbonisation scenario under delayed electrification and global climate action

80 70 60 50 30 - 100% 20 - 49% 10 - 0 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 205

Road Transport Energy Mix [Mtoe]
Decarbonisation scenario under delayed CCS
and global climate action

Aviation Energy Mix [Mtoe]
Decarbonisation scenario under delayed CCS
and global climate action

Source: PRIMES modeling for EC's Impact Assessments

Transport Energy Mix (3)

EU27 transport CO₂ emissions

TTW vs. WTW

Share of different technologies in passenger transport activity (p-km) with passenger cars

[%]	1990	2020	2030	2040	2050		
	Reference scenario						
Conventional ICE	100.0	100.0	99.9	99.9	99.9		
Plug-in hybrids	0.0	0.0	0.0	0.0	0.0		
Pure electric	0.0	0.0	0.1	0.1	0.1		
Decarbonisation scenario under effective technologies and global climate action							
Conventional ICE	100.0	92.0	69.1	29.1	13.6		
Plug-in hybrids	0.0	5.5	16.6	31.8	19.5		
Pure electric	0.0	2.6	14.3	39.0	66.8		
Decarbonisation scenario under delayed electrification and global climate action							
Conventional ICE	100.0	99.9	97.4	83.7	62.4		
Plug-in hybrids	0.0	0.0	2.1	14.0	16.2		
Pure electric	0.0	0.1	0.5	2.3	21.4		

Stock of passenger cars

Source: PRIMES-TREMOVE modeling for 2011 Transport White Paper

Transport CO₂ emissions decomposition

Electricity

- --- Effect. Techn. (frag. action, ref. fossil f. prices) -D- Effect. Techn. (glob. action, low fossil f. prices)
- -→- Effect. Techn. (frag. action, high fossil f. prices) -■- Delay. Electr. (glob. action, low fossil f. prices)

Biofuels

attaining simultaneously multiple objectives

- eliminating net deforestation by 2030
- reduce (limit increase) in agricultural emissions
- increased biomass use for energy

Reference case: biomass production more than doubles by 2050 **Decarbonisation**: the production of biomass more than triples

Cost & Benefits of transport decarbonization

I want let it light our took white to a thirty of the tangent I only to be to he	Table 15:	Mitigation	cost and	co-benefit	of envisaged	l Policy Options
--	-----------	------------	----------	------------	--------------	------------------

Policy options	Policy Option 2	Policy Option 3	Policy Option 4
Mitigation cost (€/ton CO2)	172	76	116
Co-benefit (€/ton CO2)	83	21	35
Net cost (€/ton CO2)	89	55	81

Source: PRIMES-TREMOVE transport model

THANK YOU!

marek.sturc@ec.europa.eu http://ec.europa.eu/clima/

